ROLL NO.....

BA3BS3M02/22

ANNUAL EXAMINATION, 2022

B.A./B.Sc.-III

MATHEMATICS

PAPER-II

ABSTRACT ALGEBRA

TIME: 3 HOURS

Maximum: 50

Minimum: 17

नोट:- प्रत्येक इकाई से किन्हीं दो भाग हल करो। सभी प्रश्नों के अंक समान हैं। Note: Solve any two parts from each unit. All questions carry equal marks.

UNIT-I

- प्र.1. (a) माना G एक समूह है तथा $g \in G$ का एक स्थिर अवयव है, तब सिद्ध कीजिए की फलन $Tg:G \to G$ जो $Tg(x) = gxg^{-1} \forall x \in G$ से परिभाषित है, G का एक स्वाकारिता है। Let G be a group & $g \in G$ be a fixed element. Then prove that the function $Tg:G \to G$ which is defined by $Tg(x) = gxg^{-1}$ is an automorphism of G.
 - (b) यदि o(G) = 56 सिद्ध कीजिए कि G, 1 या 8 सिलो उपसमूह रखता है। अंत्य की स्थिति में सिद्ध कीजिए कि G एक प्रसामान्य 2- सिलो उपसमूह रखता है। If o(G) = 56, prove that G has 1 or 8 sylow subgroup. Finaly, prove that G has a normal 2-sylow subgroup.

(c) माना G,N_1,N_2---N_n का आंतिरित अनुलोम गुणनफल है जहाँ N_1,N_2---N_n,G के प्रसामान्य उपसमूह हैं। तब दर्शाइये कि $N_i\cap N_j=\{e_j\}, i\neq j.$ Let N_1,N_2---N_n be the internal direct products of G, where N_1,N_2---N_n are normal subgroups of G then prove that $N_i\cap N_j=\{e_j\}, i\neq j.$

UNIT-II

- प्र.2. (a) सिद्ध कीजिए कि एक वलय का प्रत्येक विभाग वलय, वलय का समाकारी प्रतिबिम्ब होता है।
 Prove that every quotient ring of a ring is a homomorphic image of a ring.
 - (b) आइंस्टीन सूत्र की मदद से दिखाइये कि बहुपद $x^4+x^3+x^2+x+1 \text{ परिमेय संख्याओं } \hat{\sigma} \text{ लिए अखंडनीय}$ हैं। By use of Einstein criterian show that polynomial $x^4+x^3+x^2+x+1 \text{ is irreducible for rational numbers.}$
 - (c) सिद्ध कीजिये कि उपमाड्यूलो का स्वेच्छ सर्वनिष्ठ एक उपमाड्यूल होता है।

 Prove that, arbitrary intersections of submodules is also a submodule.

(c) माना P_2 कोटि 2 तक के बहुपदों का समुच्चय है जिसके उपर आंतर गुणन निम्न प्रकार से परिभाषित है— $(f(x),g(x))=\int_0^1 f(x).g(x)dX \text{ जहाँ } P_2 \text{ का } \{1,X,X^2\} \text{ आधार } है$ इस आधार की सहायता से प्रसामान्य लांबिक आधार ज्ञात कीजिए। Let P_2 be the set of polynomials of order 2 and inner product is defined as $(f(x),g(x))=\int_0^1 f(x).g(x)dX$, where $\{1,X,X^2\}$ is a basis of P_2 . Find out the orthonomal basis with the help of given basis.

-----XXXX-----

UNIT-III

- प्र.3. (a) सिद्ध कीजिए कि $R[x] = \{p(x), q(x), r(x)\}$, जहाँ $p(x) = 1 + x + 2x^2, q(x) = 2 x + x^2, r(x) = -4 + 5x + x^2$ का निकाय रैखिमितः परतंत्र है । $\text{Prove that } R[x] = \{p(x), q(x), r(x)\}, \text{ where }$ $p(x) = 1 + x + 2x^2, q(x) = 2 x + x^2, r(x) = -4 + 5x + x^2$ system is linearly dependent.
 - (b) विस्तार प्रमेय का कथन लिखिए तथा सिद्ध कीजिए। State & prove extension theorem.
 - (c) $V_3(R)$ के आधार समुच्चय $S = \{(1,1,1), (1,1,0), (1,0,0)\}$ के सापेक्ष सिदश $\propto = (a,b,c)$ के निर्देशांक ज्ञात कीजिए। Find the co-ordinate of vector $\propto = (a,b,c)$ relative to basis set $S = \{(1,1,1), (1,1,0), (1,0,0)\}$ for $V_3(R)$.

UNIT-IV

प्र.4. (a) माना T, R^3 पर एक रैखिक संकारक है जो $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, -x_1 - x_2 - 4x_3, 2x_1 - x_3)$ से परिभाषित है, आधार $B = \{\alpha_1, \alpha_2, \alpha_3\}$ जहाँ $\alpha_1 = (1,1,1),$ $\alpha_2 = (0,1,1), \alpha_3 = (1,0,1)$ के सापेक्ष T का आव्यूह ज्ञात कीजिए। Let T be a linear operator on R^3 which is define as $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, -x_1 - x_2 - 4x_3, 2x_1 - x_3)$ find the matrix with respect to Basis $B = (\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = (1,1,1)$, $\alpha_2 = (0,1,1), \alpha_3 = (1,0,1)$

- (b) कोटि शून्यता प्रमेय लिखिए तथा सिद्ध कीजिए। State & prove Rank nulity theorem.
- (c) निम्न हार्मेटीय समघात के विकर्ण समघात में सामानयन कीजिए— Reduce the following Hermitian quadratic to diagonal quadratic

$$\bar{x}_1, x_1 + 2\bar{x}_2x_2 + 3\bar{x}_3x_3 - 2i\bar{x}_1x_2 + 2ix_1\bar{x}_2 - 3i\bar{x}_2x_3 + 3i\bar{x}_3x_2$$

UNIT-V

प्र.5. (a) सिद्ध कीजिए कि निम्न आन्तर गुणन के सापेक्ष $V_2(R)$ के आंतर गुणन समिष्ट है। $(\alpha,\beta)=a_1b_1-a_2b_1-a_1b_2+2a_2b_2$, जहाँ $\alpha=(a_1,b_1)\ \&\ \beta(a_2,b_2)$

Prove that the following inner product is and inner product space $(\alpha, \beta) = a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2$, where $\alpha = (a_1, b_1) \& \beta(a_2, b_2)$

- (b) सदिश आंतर गुणन में दो सदिश α तथा β लांबिक होगें यदि और केवल यदि $\|a \propto +b\beta\|^2 = \|a \propto\|^2 + \|b\beta\|^2$, जहाँ a,b अदिश है।
 - α & β are two orthogonal vectors in inner product space if and only if $||a \propto +b\beta||^2 = ||a \propto ||^2 + ||b\beta||^2$ where a,b are scalars.